195 research outputs found

    Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate

    Get PDF
    Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q–Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versawith a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders

    Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes

    Get PDF
    Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 x 10(-10). Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (r(g) = 0.39, P = 1.68 x 10(-4)). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.Peer reviewe

    Brain Expressed microRNAs Implicated in Schizophrenia Etiology

    Get PDF
    BACKGROUND: Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors. Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation. METHODOLOGY/PRINCIPAL FINDINGS: We have studied the association between schizophrenia and genetic variants of miRNA genes associated with brain-expression using a case-control study design on three Scandinavian samples. Eighteen known SNPs within or near brain-expressed miRNAs in three samples (Danish, Swedish and Norwegian: 420/163/257 schizophrenia patients and 1006/177/293 control subjects), were analyzed. Subsequently, joint analysis of the three samples was performed on SNPs showing marginal association. Two SNPs rs17578796 and rs1700 in hsa-mir-206 (mir-206) and hsa-mit-198 (mir-198) showed nominal significant allelic association to schizophrenia in the Danish and Norwegian sample respectively (P = 0.0021 & p = 0.038), of which only rs17578796 was significant in the joint sample. In-silico analysis revealed that 8 of the 15 genes predicted to be regulated by both mir-206 and mir-198, are transcriptional targets or interaction partners of the JUN, ATF2 and TAF1 connected in a tight network. JUN and two of the miRNA targets (CCND2 and PTPN1) in the network have previously been associated with schizophrenia. CONCLUSIONS/SIGNIFICANCE: We found nominal association between brain-expressed miRNAs and schizophrenia for rs17578796 and rs1700 located in mir-206 and mir-198 respectively. These two miRNAs have a surprising large number (15) of targets in common, eight of which are also connected by the same transcription factors

    A large-scale genome-wide association study meta-analysis of cannabis use disorder

    Get PDF
    Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe

    Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate

    Get PDF
    Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q–Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versa with a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders

    Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.

    Get PDF
    Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health

    GWAS of Suicide Attempt in Psychiatric Disorders Identifies Association With Major Depression Polygenic Risk Scores

    Get PDF
    Objective: Over 90% of suicide attempters have a psychiatric diagnosis, however twin and family studies suggest that the genetic etiology of suicide attempt (SA) is partially distinct from that of the psychiatric disorders themselves. Here, we present the largest genome-wide association study (GWAS) on suicide attempt using major depressive disorder (MDD), bipolar disorder (BIP) and schizophrenia (SCZ) cohorts from the Psychiatric Genomics Consortium. Method: Samples comprise 1622 suicide attempters and 8786 non-attempters with MDD, 3264 attempters and 5500 non-attempters with BIP and 1683 attempters and 2946 non-attempters with SCZ. SA GWAS were performed by comparing attempters to non-attempters in each disorder followed by meta-analyses across disorders. Polygenic risk scoring was used to investigate the genetic relationship between SA and the psychiatric disorders. Results: Three genome-wide significant loci for SA were found: one associated with SA in MDD, one in BIP, and one in the meta-analysis of SA in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with SA in MDD (R2=0.25%, P=0.0006), BIP (R2=0.24%, P=0.0002) and SCZ (R2=0.40%, P=0.0006). Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size hold potential to robustly identify genetic associations and gain biological insights into the etiology of suicide attempt

    CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits

    Get PDF
    Funding Information: This research has been conducted using the UK Biobank Resource. This research has been conducted using the Danish National Biobank resource. The authors are grateful to the Raine Study participants and their families, and to the Raine Study research staff for cohort co-ordination and data collection. QIMR is grateful to the twins and their families for their generous participation in these studies. We would like to thank staff at the Queensland Institute of Medical Research: Anjali Henders, Dixie Statham, Lisa Bowdler, Ann Eldridge, and Marlene Grace for sample collection, processing and genotyping, Scott Gordon, Brian McEvoy, Belinda Cornes and Beben Benyamin for data QC and preparation, and David Smyth and Harry Beeby for IT support. HBCS Acknowledgements: We thank all study participants as well as everybody involved in the Helsinki Birth Cohort Study. Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Folkhälsan Research Foundation, Novo Nordisk Foundation, Finska Läkaresällskapet, Juho Vainio Foundation, Signe and Ane Gyllenberg Foundation, University of Helsinki, Ministry of Education, Ahokas Foundation, Emil Aaltonen Foundation. Finrisk study is grateful for the THL DNA laboratory for its skillful work to produce the DNA samples used in this study and thanks the Sanger Institute and FIMM genotyping facilities for genotyping the samples. We thank the MOLGENIS team and Genomics Coordination Center of the University Medical Center Groningen for software development and data management, in particular Marieke Bijlsma and Edith Adriaanse. This work was supported by the Leenards Foundation (to Z.K.), the Swiss National Science Foundation (31003A_169929 to Z.K., Sinergia grant CRSII33-133044 to AR), Simons Foundation (SFARI274424 to AR) and SystemsX.ch (51RTP0_151019 to Z.K.). A.R.W., H.Y. and T.M.F. are supported by the European Research Council grant: 323195:SZ-245. M.A.T., M.N.W. and An.M. are supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF). For full funding information of all participating cohorts see Supplementary Note 2. Publisher Copyright: © 2017 The Author(s).There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (> 2.4 cm), weight ( 5 kg), and body mass index (BMI) (> 3.5 kg/m(2)). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 x 10(-10), 6.0 x 10(-5), and 2.9 x 10(-3)). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Peer reviewe
    corecore